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Research Problem

Yi=XBpx1+¢ fort<i<n

» Number of covariates p > sample size n.
> When p > n, [|8]o < k.
> ¥ = Cov(X:.)and 02 = Var(e;)
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Research Problem

Yi=XBpx1+¢ fort<i<n

» Number of covariates p > sample size n.
» Whenp > n, |50 < k.
> ¥ = Cov(X:.)and 02 = Var(e;)
Confidence Interval for 3;: Zhang & Zhang ’14; van de Geer, Biihimann,
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Var(y;) = BTES +0° (1)

Explained Variance

Semi-supervised Inference for Q = X3

Zijian Guo (Rutgers) Inference for Explained Variance



Semi-supervised Data

Semi-supervised data is a mixture of
» Labelled/Supervised data with sample size n
» Unlabelled/Unsupervised data with sample size N

X1, »

Xo. Yo

Xn,. Vn
Xn+1 ) NA
Xn+27. NA
_Xn+N,~ NA |
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Semi-supervised Data

Semi-supervised data is a mixture of
» Labelled/Supervised data with sample size n
» Unlabelled/Unsupervised data with sample size N

X1, »

Xo. Yo

Xn,. Yn
Xn+1 ) NA
Xn+27. NA
_Xn+N,~ NA |

Efficient integration of labelled
and unlabelled data

Zijian Guo (Rutgers)
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Semi-supervised Data

1. Electronic Health Records (EHR).

> Covariates: extracted by natural language processing.
» Outcomes: labelling is costly and time-consuming
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> Covariates: extracted by natural language processing.
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2. Integrative Genetics

> Integrative analysis of multiple GWAS
» Covariates: same set of genetic variants
» QOutcomes: vary from study to study

3. Missing Outcomes
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Semi-supervised Data

1. Electronic Health Records (EHR).

> Covariates: extracted by natural language processing.
» Outcomes: labelling is costly and time-consuming

2. Integrative Genetics

> Integrative analysis of multiple GWAS
» Covariates: same set of genetic variants
» QOutcomes: vary from study to study

3. Missing Outcomes

Why to study Q = 57237
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Genetic Application: Heritability

1. Heritability: variance explained
by genetic variants (e.g. SNPs)

2. For normalized outcome,
represented by STL 3

Figure: Yeast Colony YNB

Zijian Guo (Rutgers) Inference for Explained Variance



Genetic Application: Heritability

1. Heritability: variance explained
by genetic variants (e.g. SNPs)

2. For normalized outcome,
represented by STL 3

3. Yeast study: p = 4,410 SNPs
and n = 1,008 samples.

4. Missing heritability.

Figure: Yeast Colony YNB

Bloom, J. S., Ehrenreich, I. M., Loo, W. T,, Lite, T. L. V., & Kruglyak, L. (2013). Finding
the sources of missing heritability in a yeast cross. Nature, 494(7436), 234-237.
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Applications: Signal Detection and Global Testing

Signal Detection
Hy: 878 =0v.s. H : BTL5 > 0. (2)

5 ~ I: Ingster, Tsybakov & Verzelen(2010); Arias-Castro, Candés, & Plan (2011).

Global testing

Ho - (ﬂ_ﬁnull)Tz (ﬁ_ﬂnull> =0v.s. Hy : (ﬂ_ﬁnull)Tz (B_Bnuu) > 0.
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Applications: Accuracy and Confidence Ball

Prediction Accuracy Assessment of B
E[xt(B-8)] = (3-8)"=(3-5)
Inference for ||3 — 4|3: Cai and Guo (2017).
Confidence Ball for
{ere:(B-8)'x(B-58)<U}

Knowledge of o: Nickl and van de Geer (2013).
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Overview of talk

9 Point Estimation
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Idea of Calibration/Correction

> 3 and £ denote certain “good" estimators of 5 and *
> A natural estimator is the plug-in estimator BTfB
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Idea of Calibration/Correction

> B and ¥ denote certain “good" estimators of 5 and *
> A natural estimator is the plug-in estimator 37%3
Error Decomposition

BTEB-BTEB =20TS(3 — B)—(B—B)TE(B - B)+ BT(E-T)8

Error of estimating g Error of estimating
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Idea of Calibration/Correction

> B and ¥ denote certain “good" estimators of 5 and *
> A natural estimator is the plug-in estimator 37%3
Error Decomposition

BTEB-BTEB =20TS(3 — B)—(B—B)TE(B - B)+ BT(E-T)8

Error of estimating g Error of estimating

Idea: Calibrate plug-in estimator by estimating 2375(j3 — 3).
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Calibration/Correction term

(BE8-205(F - 9))-pTE8 =~ (B-B)E(B-B)+ FIE-T)8 .

Error of estimating 3 Error of estimating >
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Calibration/Correction term

(BE8-205(F - 9))-pTE8 =~ (B-B)E(B-B)+ FIE-T)8 .

Error of estimating 3 Error of estimating

Estimation of 237%(5 — 3)

_opT- ZX ~X.B)=25T~ ZxxT (5 5) 2BT:’ZH:X,-.E,-.
i=1

~20TE(B — B) — 287~ ZX €i
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CHIVE

Propose the following calibrated/corrected estimator

O35, 2) = FTEh+ 257 ZX Xi.5). (4)

Calibration Term

Calibrated High-dimensional Inference for Variance Explained (CHIVE)
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CHIVE

Propose the following calibrated/corrected estimator

O35, 2) = FTEh+ 257 ZX Xi.5). (4)

Calibration Term

Calibrated High-dimensional Inference for Variance Explained (CHIVE)

Required Inputs:
> j3: estimator of 3
> : estimator of &
> Labelled data Z = (X, y)

Zijian Guo (Rutgers) Inference for Explained Variance



Algorithm Inputs
S -y —Xgll5 o, [2.01 Iogp X ||2
16,5} =are BERPoER T—i_Z Z 1Ayl

~

_ _1 n+N vy yT
L= izt XiX]

» Unlabelled data is only used here.
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Algorithm Inputs
S -y —Xgll5 o, [2.01 Iogp X ||2
16,5} =are BERPoER T—i_Z Z 1Ayl

~

_ _1 n+N vy yT
L= izt XiX]

» Unlabelled data is only used here.

Assumptions on Band G
> With high probability, the estimator 3 satisfies

max { JIX(B - Al 18— 8l ) < /<222, 15— gl < kP22,

> 52 is a consistent estimator of o2.
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Convergence Rate

Theorem 1(Cai. & G., 2018)

Suppose that k < cn/ log p for some constant ¢ > 0, the
estimator Q satisfies

8 101, iogp

\/W n ®)

-

» N: sample size of unlabelled data;
» n: sample size of labelled data;

» K: number of non-zeros in g3;

» Depends on ||5]|2.
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Convergence Rate

Theorem 1(Cai. & G., 2018)

Suppose that k < cn/ log p for some constant ¢ > 0, the
estimator Q satisfies

8 101, iogp

\/W n ®)

-

N: sample size of unlabelled data;
n: sample size of labelled data;

Depends on || 3]|2.

>

>

» Kk: number of non-zeros in 3;
>

» Unlabelled data is helpful.
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Optimal Convergence Rate

M
© (kM) = {(8.E,0): 1510 < ki . < 18ll2 < M, G < din (£) < s (£) < G |

> k: sparsity level;
» M: the signal strength of 5 in its £, norm.

Theorem 2(Cai. & G., 2018)

Suppose k < cmin{n/logp, p”} for some constants ¢ >
0and 0 < v < . Then

inf sup P(‘Q Q’

Q 0€0(k,M)

—I—min{M + kIng,M2}) > 1

m vn n

A~
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Optimal Convergence Rate

M,r
M 4 M2
vn ' V/N+n
klogp
FOEE o
log p M2
k n + N+n
KOG D |
n M2
0 \ > K
0 Vn/log p n/log p
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Optimal Convergence Rate

M,r

M M2
vn ' V/N+n

klogp

SRR
log p M2
k n + N+n

KOG D |

n M2
0 \ — k
0 Vn/log p n/log p

For M > /*%82 the optimal rate is achieved by CHIVE.
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Numerical illustration: RMSE

» p =800, n <€ {200, 400,600,800,1,000} and N = 2,000
> k= 10andﬁ: (01’027037 7170a07"' ,O)
» True value g7 =9.42

< | O~ = =+ Plugin
= N - - - CHIVE.label
N
N —— CHIVE
N N
— ~
\\
N
e | N
‘('I/’J — \\
b= TTe-ol
X o S~a
S - RS
© \\s_
S ~“~-
<I_A ~ -
o
T T T T T
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Sample Size
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Special Case: Supervised Setting
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Supervised Setting

Estimate ¥ by & = 1 57, X; XT and then
Q(B,%,2) = BTEB + w—zx - X;.B). (6)

Corollary 1(Cai. & G., 2018)

Suppose k < cmin{n/logp, p”} for some constants ¢ >
0and 0 < v < , the CHIVE estimator achieves the opti-
mal convergence rate

M  M? klogp

— +—+

vn o v/n n
over ©(k, M) for M = \/klog p/n.

(7)

» Special case of semi-supervised setting with N = 0.
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Connection to Literature

> Q=E(y?) - o?
» Sun and Zhang [2012] and Verzelen and Gassiat [2016]

PSP 1 - 1 .
BEB+28" S Xy XB) = o (vl — lly - XBIE) = LlyIE -
i=1

Zijian Guo (Rutgers) Inference for Explained Variance



Connection to Literature

> Q=E(y?) - o?
» Sun and Zhang [2012] and Verzelen and Gassiat [2016]

PSP 1 - 1 .
FEB2RT L 2K = XB) = (1B = Iy = XBIB) = - lIyI8 5>
=

» New perspective: estimate STx 3 directly by calibrating the
plug-in estimator
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Connection to Literature

> Q=E(y?) - o?
Sun and Zhang [2012] and Verzelen and Gassiat [2016]

v

PSP 1 - 1 .
BrEB+28" L > X (yi—X.B) = (IvlIB — lly — XBIE) = L lyIE—5°.
i=1

» New perspective: estimate STx 3 directly by calibrating the
plug-in estimator

» This new perspective is useful for semi-supervised setting.
» Study of uncertainty quantification.
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Statistical Fundamental Limit Comparison

» Consider k < cmin{n/
» Sequence model: y;

logp,p”}for0 <wv<1/2

Zﬁ;+%e;for1 <i<p.

Model Target Optimal Rate over ©(k, M)
Sequence model | 3|3 min {M\f  Klogp MZ}
HD regression | |33 | min {M# + Klogp | pyklogp MQ}
HD regression | STX3 | min {Mﬁ  Klogp 4 p2 1 Mz}

Collier, O., Comminges, L., & Tsybakov, A. B. (2017). Minimax estimation of linear
and quadratic functionals on sparsity classes. AOS, 45(3), 923-958.

Guo, Z., Wang, W., Cai, T.T., & Li, H.(2017). Optimal estimation of Genetic
Relatedness in high-dimensional linear models. JASA, to appear.

Zijian Guo (Rutgers)
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Limiting Distribution

Theorem 3(Cai. & G., 2018)

Suppose that k < /n/log p and ||8]|2 > klog p/v/n,
vi(Q-Q)

\/402BTEB + oE (87X,.X] 5 — BTEB)?

— N(0, 1)

(8)

» Stronger conditions than estimation
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Limiting Distribution

Theorem 3(Cai. & G., 2018)

vi(Q-Q)

/4026755 + 4B (510 X[ 8 — 75 5)°

Suppose that k < /n/log p and ||8]|2 > klog p/v/n,

— N(0, 1)

(8)

» Stronger conditions than estimation
> 402878 +pE (87X X[ — BTER)?
———

Uncertainty for 8 Uncertainty for
ﬁ(G—Q)
If p =0, then 402&:6% (0,1)
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Confidence Interval Construction

Estimate \/402[3T2ﬁ + pE (B7X1.X] 8 — 5T2ﬂ)2/ﬁ.
> Estimate 46287X3 by ¢y = 623TE 3,
» Estimate p by p = n/(N + n),
> Estimate E (87X1.X{ 3 — BTZ[J’)Z by

R 1 n+N R .2
bo = —— > (Fxix15-BE3)",
i=1

n+ N 4
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Confidence Interval Construction

Estimate \/4U2BTZﬁ + pE (B7X1.X] 8 — 5T2ﬂ)2/ﬁ.
> Estimate 46287X3 by ¢y = 623TE 3,
» Estimate p by p = n/(N + n),
> Estimate E (87X1.X{ 3 — ﬁTZ[J’)Z by

. 1 n+N R >
b=~ > (BTXXTB - BT5R)",
i=1

n+ N 4

We propose the following ClI,

CI(Z) = ((6 - za/2$>+ ) 6 + Za/2$) ) where é;: 4(;5_1-;@
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Coverage and Length Precision

Theorem 4(Cai. & G., 2018)
Suppose that k < /n/logp and ||3||2 > klog p/+/n, then

liminfP (574 € CL(Z)) > 1 - a

TR 2
im P (L(CI(Z)) > (1 +6O)\/402€:Zﬁ N E(/hx1.);;fn ATEB) ) L,

for any positive constant 6o > 0.

J

Additional unlabelled data leads to shorter confidence intervals.

Zijian Guo (Rutgers) Inference for Explained Variance




Numerical illustration: Coverage and Precision

<
-
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0.0

e
= = = CHIVE.label
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Sample Size

(Rutgers)

Length
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Weak Signals: Super-efficiency

For k <« k*,@, coverage property is only for ||| > ""’7%,‘70.
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Weak Signals: Super-efficiency

For k <« kﬂ, coverage property is only for ||| > ""’7%,‘70.

. , E(87X. X] f—BTEB)°
1. /variance level is \/402€7ng 4 2 et )

2. Bias level: klogp/n
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Weak Signals: Super-efficiency

For k <« kﬂ, coverage property is only for ||| > ""’7%,‘70.

. . E(87 X, XT B—B753)?
1. +/variance level is \/402€,Tzﬁ + (g% ,\}fn orep)

2. Bias level: klogp/n
3. Even for weak signals, CHIVE still shoots at the center.
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Weak Signals: Super-efficiency

For k <« k*,@, coverage property is only for ||| > ""’7%,‘70.

. . E(87 X, XT B—B753)?
1. +/variance level is \/402€,Tzﬁ + (g% ,\}fn orep)

2. Bias level: klogp/n
3. Even for weak signals, CHIVE still shoots at the center.
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Randomized Calibration

. jid .
Generate random variables u; ~ N(0,72)for1 <i<n
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Randomized Calibration

. jid .
Generate random variables u; ~ N(0,72)for1 <i<n

0" (5.5.2.0) - 85420 3 (XG4 u) (- X[B). (@)
i=1
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Randomized Calibration

Generate random variables u; " N(0,72)for1 <i<n
o~ ~ a1 ~ ~
Q7 (B.5.2.u) = FTEA+2- 3 (X[B+u) (vi - XIB). (@)
i=1

1. If u; = 0, reduced to non-randomized CHIVE.
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Randomized Calibration

Generate random variables u; " N(0,72)for1 <i<n
o~ ~ a1 ~ ~
Q7 (B.5.2.u) = FTEA+2- 3 (X[B+u) (vi - XIB). (@)
i=1

1. If u; = 0, reduced to non-randomized CHIVE.

2. For u; ™ N(0, 72), then

1¢ -
2 Z; ui(y; — X[ B) = N(0,40%7¢ /n).
=

3. The enlarged +/variance level dominates the bias level.

Zijian Guo (Rutgers) Inference for Explained Variance



Limiting Distribution

Theorem 5(Cai.& G., 2018)

Suppose k < v/n/logp and 7o > 0 is a positive constant,

\f QR - Q d
n > — N(07 1)
V402 (BTEB + 2) + pE (87 X0.X] 8 — BTEB)

where p = lim - 75.
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Limiting Distribution

Theorem 5(Cai.& G., 2018)

Suppose k < v/n/logp and 7o > 0 is a positive constant,

\f QR - Q d
n > — N(07 1)
V402 (BTEB + 2) + pE (87 X0.X] 8 — BTEB)

where p = lim - 75.

1. No Free Lunch: variance enlarged by 40272 /n
2. Finite sample: 7o > Ck'°—¢%pa
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Limiting Distribution

Theorem 5(Cai.& G., 2018)

Suppose k < v/n/logp and 7o > 0 is a positive constant,

f (/jR - Q a
n > — N(07 1)
V402 (BTEB + 2) + pE (87 X0.X] 8 — BTEB)

where p = lim - 75.

1. No Free Lunch: variance enlarged by 40272 /n
2. Finite sample: 7o > Ck'°—¢%pa
3. Construct CI by estimating the standard error.

Zijian Guo (Rutgers) Inference for Explained Variance



Overview of talk

e Statistical and Biological Applications
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Statistical Application: Signal Detection
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Signal Detection

Signal Detection

Hy: BT =0vs. Hy : T8 > 0.
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Signal Detection

Signal Detection
Hy: BT =0vs. Hy : T8 > 0.

1. We choose 7y and apply randomized calibration,
> obtain the point estimator QF (7o) for ATL3;
> obtain the SE estimator ¢ (7).

2. For a € (0,1), propose

D(r0) = 1(Q(m0) 2 6°(r0)2a) .

Zijian Guo (Rutgers) Inference for Explained Variance



Numerical illustration: Signal Detection

» n=600,p=800,5=(0d,---,0 ,0,---,0)
N’

50 repetitions

> § € {0,0.025,0.05,0.075,0.10,0.125,0.15}

1.004

Empirical Detection Rate

o
N
o

=]
3
a

o
13
=}

Randomization —e— tau0=0 -4 - tau0=2 -#- tau0=4 —~ tau0=6
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Biological Application: Heritability
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Missing Heritability

» Data: n= 1,008 yeast, p = 4,410 markers, 46 traits;

» Missing heritability (Bloom et al., 2013)
“the undiscovered factors could have effects that are too
small to be detected with current sample sizes".

Bloom, J. S., Ehrenreich, I. M., Loo, W. T,, Lite, T. L. V., & Kruglyak, L. (2013).
Finding the sources of missing heritability in a yeast cross. Nature, 494(7436),
234-237.
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Missing Heritability

» Data: n= 1,008 yeast, p = 4,410 markers, 46 traits;

» Missing heritability (Bloom et al., 2013)
“the undiscovered factors could have effects that are too
small to be detected with current sample sizes".

Bloom, J. S., Ehrenreich, I. M., Loo, W. T,, Lite, T. L. V., & Kruglyak, L. (2013).
Finding the sources of missing heritability in a yeast cross. Nature, 494(7436),
234-237.

> BT33 tends to lower estimate B3T3
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Confidence Interval for Heritability

Supervised Semi-Supervised

Media Plug CHIVE Cl Plug CHIVE Cl Missing

Raffinose | 0.3168 0.5105 [0.4300, 0.5909] | 0.3105 0.5041 [0.4259, 0.5824] | 34.33%
(0.0410) (0.0399)

Sorbitol | 0.2968 0.4893 [0.4049, 0.5737] | 0.2864 0.4789 [0.3972, 0.5606] | 40.58%
(0.0431) (0.0417)

YNB 0.3654 0.5927 [0.5248,0.6607] | 0.3652 0.5926 [0.5247, 0.6605] | 0.20%
(0.0347) (0.0347)

1. CHIVE adds back missing heritability due to small effects.

(Rutgers)
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Confidence Interval for Heritability

Supervised Semi-Supervised

Media Plug CHIVE Cl Plug CHIVE Cl Missing

Raffinose | 0.3168 0.5105 [0.4300, 0.5909] | 0.3105 0.5041 [0.4259, 0.5824] | 34.33%
(0.0410) (0.0399)

Sorbitol | 0.2968 0.4893 [0.4049, 0.5737] | 0.2864 0.4789 [0.3972, 0.5606] | 40.58%
(0.0431) (0.0417)

YNB 0.3654 0.5927 [0.5248,0.6607] | 0.3652 0.5926 [0.5247, 0.6605] | 0.20%
(0.0347) (0.0347)

1. CHIVE adds back missing heritability due to small effects.

2. Shorter Cl with unlabelled data
» around 3% for Sorbitol (with 40.58% outcome missing)
» around 2% for Raffinose (with 34.33% outcome missing)

3. Colony sizes are genetically heritable (Bloom et al., 2013)

Zijian Guo (Rutgers)
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Overview of talk

e Summary and Discussion
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1. Inference for S7L 3

» Calibration/Correction
» Randomization (weak signals)
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1. Inference for S7L 3

» Calibration/Correction
» Randomization (weak signals)

2. Semi-supervised: efficient integration of unlabelled data
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1. Inference for S7L 3
» Calibration/Correction
» Randomization (weak signals)
2. Semi-supervised: efficient integration of unlabelled data
3. Statistical and biological applications
» Heritability
Signal to noise ratio
Signal detection

>
>
» Prediction accuracy assessment
» Confidence set construction

> ...
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Inference for Functionals

1. Linear Functionals n' 3
> B
> 51— Ba
> x|

new

2. Quadratic Functionals

> 1813
> BTYS = Var(X]j)
> B5Xaaba = Var(X[56a)

3. {4 Accuracy Functionals

> |3 - BlI5 (Accuracy assessment of B)
> 1B pBlfor1<q<2.
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Bias Correction

Error decomposition of |32

1815 = 11815 = —2(5.5 - 5) -3 - Bl3 (10)
—_———

Main Error
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Bias Correction

Error decomposition of |32

1513 18112 = —2(B, 8 — B) —1B — Bl3 (10)
~—————
Main Error
Bias correction idea:

<|B§+2<B,53>) —1BIE=—-18-83. (1)
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Bias Correction

Error decomposition of |32

1513 18112 = —2(B, 8 — B) —1B — Bl3 (10)
~—————
Main Error
Bias correction idea:

<B§+2<B,5/§>) —1BIE=—-18-83. (1)
N—_———

Main Error

Intuition of estimating <§, B — B}

.1

HXTX(B —B) = —%XTE + Asign(B).

Multiply both sides by 3T (1XTX) ™",
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Projection Direction

> (y, X) is split into two subsamples (y(), X(1)) with sample
size n/2 and (y®, X(®) with sample size n/2.
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Projection Direction

> (y, X) is split into two subsamples (y(), X(1)) with sample
size n/2 and (y®, X(®) with sample size n/2.

> Let 3 denote the scaled Lasso estimator based on
(y(1),X(‘)).
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Projection Direction

> (y, X) is split into two subsamples (y(), X(1)) with sample
size n/2 and (y®, X(®) with sample size n/2.

> Let E denote the scaled Lasso estimator based on
(y(1),X(‘)).

» For u € RP,

/

Variance Bias

with & = (X®@) " x@/(n/2).
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Projection Direction

1o’ (X@) " @ | X@ ~ N0, uT Su).

2. |\/3 (uTE-BT) (8-5)| < \/#IZu =Bl - Bl

» Define the projection direction u as

~ e e 5 S
u:argmin{uTZu:HZU—BHOOSHBHg 1 } (13)

UERP \V/n/2

where A\ < +/log p.
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Functional Debiased Estimator (FDE)

> Estimate (3, 8 — 3) by

aTn}z ( X(z))T (y(z) _ Xx® g) _

> Propose Functional Debiased Estimator (FDE) of || 3|3 as
— 1

1613 = | 1BIE+20" -5 (X@) (v - x@5)

Correction +
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